Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131433, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583846

RESUMO

Tannic acid (TA) exhibits low bioavailability in the gastrointestinal tract, limiting its benefits due to small amounts reaching the CNS. Thus, the objective of this study was to develop zein capsules and fibers by electrospraying/electrospinning for encapsulation of TA. Polymeric solutions were evaluated by electrical conductivity, density, and viscosity. In zein capsules, up to 2 % TA was added, and in fibers, up to 1 % TA was added. Zein capsule and fiber with TA were evaluated by morphology, size distribution, encapsulation efficiency, thermal and thermogravimetric properties, and functional groups. Zein capsule with 1.5 % TA was evaluated in astrocyte culture for cytotoxicity and antioxidant activity. TA zein capsules and fibers exhibited high encapsulation efficiency and homogeneous morphology. TA encapsulated in zein presented higher thermal stability than free TA. TA zein capsule did not present toxicity and elicited antioxidant action in lipopolysaccharide-induced astrocyte culture. Capsules and fibers were successfully produced by electrospraying/electrospinning techniques.

2.
Neurosci Lett ; 826: 137730, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485080

RESUMO

PURPOSE: Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS: Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS: Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION: These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.


Assuntos
Acetilcolinesterase , Senoterapia , Ratos , Feminino , Camundongos , Animais , Catalase/metabolismo , Acetilcolinesterase/metabolismo , Ratos Wistar , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Estresse Oxidativo , Quercetina/farmacologia , Encéfalo/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases
3.
Metab Brain Dis ; 38(4): 1261-1272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36735154

RESUMO

The blackberry (Rubus sp.) is a popular fruit that has a high concentration of phenolic compounds. Pharmacological investigations have demonstrated the important biological activities of the blackberry extract, such as neuroprotective actions. This study aimed to evaluate the effects of blackberry extract on memory and neurochemical parameters in rats subjected to scopolamine (SCO)-induced amnesia. Male rats were divided into five groups: I, control (saline); II, SCO; III, SCO + Rubus sp. (100 mg/kg); IV, SCO + Rubus sp. (200 mg/kg); and V, SCO + donepezil (5 mg/kg). Blackberry extract and donepezil were orally administered for 10 days. On day 11, group I received saline, and groups II, III, IV, and V received SCO (1 mg/kg) intraperitoneally after object recognition behavioral training. Twenty-four hours after the training session, animals were subjected to an object recognition test. Finally, the animals were euthanized, and the cerebral cortex, hippocampus, and cerebellum were collected to evaluate the oxidative stress and acetylcholinesterase (AChE) activity. Rubus sp. extract prevented memory impairment induced by SCO in a manner similar to that of donepezil. Additionally, Rubus sp. extract and donepezil prevented the increase in AChE activity induced by SCO in all the evaluated brain structures. SCO induced oxidative damage in the cerebral cortex, hippocampus, and cerebellum, which was prevented by Rubus sp. and donepezil. Our results suggest that the antioxidant and anticholinesterase activities of Rubus sp. are associated with memory improvement; hence, it can potentially be used for the treatment of neurodegenerative diseases.


Assuntos
Rubus , Ratos , Masculino , Animais , Rubus/metabolismo , Acetilcolinesterase/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Escopolamina/farmacologia , Hipocampo/metabolismo , Córtex Cerebral/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Cerebelo/metabolismo , Aprendizagem em Labirinto
4.
Brain Res Bull ; 193: 1-10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442692

RESUMO

Alzheimer's disease (AD) is characterized mostly by memory decline. The current therapeutic arsenal for treating AD is limited, and the available drugs only produce symptomatic benefits, but do not stop disease progression. The search for effective therapeutic alternatives with multitarget actions is therefore imperative. One such a potential alternative is thiazolidin-4-one, a compound that exhibits anti-amnesic, anticholinesterase, and antioxidant activities. The aim of this study was evaluated the effects of 2-(4-(methylthio)phenyl)- 3-(3-(piperidin-1-yl)propyl) thiazolidin-4-one (DS12) on memory and neurochemical parameters in a model of AD induced by an intracerebroventricular injection of streptozotocin (STZ). Adult male rats were divided into five groups: I, control (saline); II, DS12 (10 mg/kg); III, STZ; IV, STZ + DS12 (10 mg/kg); V, STZ + donepezil (5 mg/kg). The rats were orally treated with DS12 and donepezil for a period of 20 days. Memory, acetylcholinesterase (AChE) activity, phosphorylated tau protein levels and oxidative stress were analyzed in the cerebral cortex, hippocampus, and cerebellum. Biochemical and hematological parameters were evaluated in the blood and serum. Memory impairment and the increase in AChE activity and phosphorylated tau protein level induced by STZ were prevented by DS12 and donepezil treatment. Streptozotocin induces an increase in reactive oxygen species levels and a decrease in catalase activity in the hippocampus, cerebral cortex, and cerebellum. DS12 treatment conferred protection from oxidative alterations in all brain structures. No changes were observed in serum biochemical parameters (glucose, triglycerides, cholesterol, uric acid, and urea) or hematological parameters, such as platelets, lymphocytes, hemoglobin, hematocrit, and total plasma protein. DS12 improved memory and neurochemical changes in an AD model and did not show toxic effects, suggesting the promising therapeutic potential of this compound.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Proteínas tau/metabolismo , Estreptozocina/toxicidade , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Transtornos da Memória/induzido quimicamente , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Aprendizagem em Labirinto
5.
Neurochem Res ; 48(3): 846-861, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36357747

RESUMO

Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders with high rates of prevalence and mortality. MDD is pathophysiologically complex, and treatment options are limited. Blueberries are rich in polyphenols and have neuroprotective potential. The aim of this study was to investigate the effects of blueberry extract on neuroinflammatory and neuroplasticity parameters, as well as Na+/K+-ATPase, monoamine oxidase-A (MAO-A), and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus of mice subject to lipopolysaccharide (LPS)-induced depressive-like behavior. We also analyzed the interaction between anthocyanins and indoleamine 2 3-dioxygenase (IDO). Male Swiss mice (60-day-old) received vehicle, fluoxetine (20 mg/kg), or blueberry extract (100 or 200 mg/kg) intragastrically for 7 days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, the mice were subjected to behavioral tests. Both fluoxetine and blueberry extract (200 mg/kg) decreased the immobility time in the forced swim test, without affecting locomotor activity. Fluoxetine attenuated the decrease of Na+/K+-ATPase in the cerebral cortex, while blueberry extract promoted this same effect in the hippocampus. Additionally, fluoxetine and blueberry extract attenuated the decrease in the activity of MAO-A in the hippocampus. Blueberry extract (200 mg/kg) also prevented LPS-induced increase in AChE activity in the hippocampus as well as LPS upregulation of relative mRNA expression of tumor necrosis factor alpha, interleukin (IL)-1ß, and IL-10 in the cerebral cortex. Molecular docking analysis revealed binding sites for malvidin 3-galactoside (- 7.8 kcal/mol) and malvidin 3-glucoside (- 7.9 kcal/mol) residues with IDO. Taken together, these results indicate that blueberry extract improved depression-like behavior and attenuated the neurochemical and molecular changes in the brains of mice challenged with LPS.


Assuntos
Transtorno Depressivo Maior , Lipopolissacarídeos , Masculino , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Antocianinas/metabolismo , Fluoxetina/farmacologia , Doenças Neuroinflamatórias , Transtorno Depressivo Maior/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Monoaminoxidase/metabolismo , Comportamento Animal
6.
Metab Brain Dis ; 37(6): 2133-2140, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759073

RESUMO

Acetylcholine is an excitatory neurotransmitter that modulates synaptic plasticity and communication, and it is essential for learning and memory processes. This neurotransmitter is hydrolyzed by acetylcholinesterase (AChE), which plays other cellular roles in processes such as inflammation and oxidative stress. Ion pumps, such as Na+/K+-ATPase and Ca2+-ATPase, are highly expressed channels that derive energy for their functions from ATP hydrolysis. Impairment of the cholinergic system and ion pumps is associated with neuropsychiatric diseases. Major depressive disorder (MDD) is an example of a complex disease with high morbidity and a heterogenous etiology. Polyphenols have been investigated for their therapeutic effects, and tannic acid (TA) has been reported to show neuroprotective and antidepressant-like activities. Animal models of depression-like behavior, such as lipopolysaccharide (LPS)-induced models of depression, are useful for investigating the pathophysiology of MDD. In this context, effects of TA were evaluated in an LPS-induced mouse model of depression-like behavior. Animals received TA for 7 days, and on the last day of treatment, LPS (830 µg/kg) was administered intraperitoneally. In vitro exposure of healthy brain to TA decreased the AChE activity. Additionally, this enzyme activity was decreased in cerebral cortex of LPS-treated mice. LPS injection increased the activity of Ca2+-ATPase in the cerebral cortex but decreased the enzyme activity in the hippocampus. LPS administration decreased Na+/K+-ATPase activity in the cerebral cortex, hippocampus, and striatum; however, TA administration prevented these changes. In conclusion, tannins may affect Na+/K+-ATPase and Ca2+-ATPase activities, which is interesting in the context of MDD.


Assuntos
Acetilcolinesterase , Transtorno Depressivo Maior , Acetilcolinesterase/metabolismo , Animais , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Taninos/farmacologia , Taninos/uso terapêutico
7.
Neurochem Res ; 47(6): 1541-1552, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35178643

RESUMO

Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.


Assuntos
Glioblastoma , Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Glioblastoma/tratamento farmacológico , Nitritos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase , Taninos/farmacologia , Taninos/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico
8.
Nutr Neurosci ; 25(4): 857-870, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32954970

RESUMO

OBJECTIVE: Major depressive disorder is a debilitating and recurrent psychiatric disorder. Blueberries have several biological properties, including neuroprotective effects, through antioxidant and anti-inflammatory actions. The aim of this study was to evaluate the effect of blueberry extract on depressive-like behavior and lipopolysaccharide (LPS)-induced neurochemical changes. METHODS: Mice were pretreated with vehicle, fluoxetine (20 mg/kg) or blueberry extract (100 or 200 mg/kg) intragastrically for seven days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, mice were submitted to behavioral tests. Oxidative stress and neuroinflammatory parameters were evaluated in the cerebral cortex, hippocampus, and striatum. RESULTS: Our data showed that blueberry extract or fluoxetine treatment protected against LPS-induced depressive-like behavior in tail suspension and splash tests (P < 0.05), without changes in locomotor activity (P > 0.05). LPS induced an increase in the levels of reactive oxygen species (P < 0.001), nitrite (P < 0.05) and thiobarbituric acid reactive substances (P < 0.01), as well as a reduction in total sulfhydryl content (P < 0.05) and catalase activity (P < 0.05) in brain structures; blueberry extract restored these alterations (P < 0.05). In addition, blueberry extract attenuated the increase in tumor necrosis factor-alpha (TNF-α) levels induced by LPS administration (P < 0.05). CONCLUSION: This study showed that blueberry extract exerted antidepressant-like effects, protected the brain against oxidative damage, and modulated TNF-α levels induced by LPS.


Assuntos
Mirtilos Azuis (Planta) , Transtorno Depressivo Maior , Animais , Comportamento Animal , Mirtilos Azuis (Planta)/química , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico
9.
Neurochem Res ; 47(2): 446-460, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34623562

RESUMO

This study investigated the effects of inosine on memory acquisition and consolidation, cholinesterases activities, redox status and Na+, K+-ATPase activity in a rat model of scopolamine-induced cognitive impairment. Adult male rats were divided into four groups: control (saline), scopolamine (1 mg/kg), scopolamine plus inosine (50 mg/kg), and scopolamine plus inosine (100 mg/kg). Inosine was pre-administered for 7 days, intraperitoneally. On day 8, scopolamine was administered pre (memory acquisition protocol) or post training (memory consolidation protocol) on inhibitory avoidance tasks. The animals were subjected to the step-down inhibitory avoidance task 24 hours after the training. Scopolamine induced impairment in the acquisition and consolidation phases; however, inosine was able to prevent only the impairment in memory consolidation. Also, scopolamine increased the activity of acetylcholinesterase and reduced the activity of Na+, K+-ATPase and the treatment with inosine protected against these alterations in consolidation protocol. In the animals treated with scopolamine, inosine improved the redox status by reducing the levels of reactive oxygen species and thiobarbituric acid reactive substances and restoring the activity of the antioxidant enzymes, superoxide dismutase and catalase. Our findings suggest that inosine may offer protection against scopolamine-induced memory consolidation impairment by modulating brain redox status, cholinergic signaling and ion pump activity. This compound may provide an interesting approach in pharmacotherapy and as a prophylactic against neurodegenerative mechanisms involved in Alzheimer's disease.


Assuntos
Disfunção Cognitiva , Consolidação da Memória , Acetilcolinesterase/metabolismo , Animais , Colinérgicos/efeitos adversos , Inosina/efeitos adversos , Bombas de Íon/farmacologia , Bombas de Íon/uso terapêutico , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Escopolamina/farmacologia
10.
Metab Brain Dis ; 36(7): 1481-1499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34264451

RESUMO

Bipolar disorder (BD) is a complex psychiatric disease characterized by mood swings that include episodes of mania and depression. Given its cyclical nature, BD is especially hard to model; however, the standard practice has been to mimic manic episodes in animal models. Despite scientific advances, the pathophysiology of BD is not fully understood, and treatment remains limited. In the last years, natural products have emerged as potential neuroprotective agents for the treatment of psychiatric diseases. Thus, the aim of this review was to explore the therapeutic potential of natural compounds and derivatives against BD, taking into account preclinical and clinical studies. Reliable articles indexed in databases such as PubMed, Web of Science and Science Direct were used. In clinical studies, treatment with herbal plants extracts, omega-3, inositol, n-acetylcysteine and vitamin D has been associated with a clinical improvement in symptoms of mania and depression in BD patients. In animal models, it has been shown that red fruits extracts, curcumin, quercetin, gallic acid, alpha-lipoic acid and carvone can modulate many neurochemical pathways involved in the pathophysiology of manic episodes. Thus, this review appointed the advances in the consumption of natural compounds and derivatives as an important therapeutic strategy to mitigate the symptoms of BD.


Assuntos
Produtos Biológicos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Mania/tratamento farmacológico , Animais , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/uso terapêutico , Ácido Gálico/uso terapêutico , Humanos , Inositol/uso terapêutico , Extratos Vegetais/uso terapêutico , Quercetina/uso terapêutico
11.
Neurochem Res ; 46(6): 1554-1566, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755857

RESUMO

Cholinergic system dysfunction, oxidative damage, and alterations in ion pump activity have been associated with memory loss and cognitive deficits in Alzheimer's disease. 1,3-thiazolidin-4-ones have emerged as a class of compounds with potential therapeutic effects due to their potent anticholinesterase activity. Accordingly, this study investigated the effect of the 2-(4-(methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one (DS12) compound on memory, cholinergic and oxidative stress parameters, ion pump activity, and serum biochemical markers in a scopolamine-induced memory deficit model. Male Wistar rats were divided into four groups: I-Control; II-Scopolamine; III-DS12 (5 mg/kg) + scopolamine; and IV-DS12 (10 mg/kg) + scopolamine. The animals from groups III and IV received DS12 diluted in canola oil and administered for 7 days by gavage. On the last day of treatment, scopolamine (1 mg/kg) was administered intraperitoneally (i.p.) 30 min after training in an inhibitory avoidance apparatus. Twenty-four hours after scopolamine administration, the animals were subjected to an inhibitory avoidance test and were thereafter euthanized. Scopolamine induced memory deficits, increased acetylcholinesterase activity and oxidative damage, and decreased Na+/K+-ATPase activity in cerebral cortex and hippocampus. Pretreatment with DS12 prevented these brain alterations. Scopolamine also induced an increase in acetylcholinesterase activity in lymphocytes and whereas butyrylcholinesterase in serum and treatment with DS12 prevented these changes. In animals treated with DS12, no changes were observed in renal and hepatic parameters when compared to the control group. In conclusion, DS12 emerged as an important multitarget compound capable of preventing neurochemical changes associated with memory deficits.


Assuntos
Transtornos da Memória/prevenção & controle , Nootrópicos/uso terapêutico , Piperidinas/uso terapêutico , Tiazolidinas/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Escopolamina , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Int J Dev Neurosci ; 81(3): 285-289, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33606291

RESUMO

Hypermethioninemia is characterized by high plasma concentrations of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), and neurological changes, such as cerebral edema and cognitive deficits. The aim of this study was to analyze the redox status and acetylcholinesterase (AChE) activity in the hippocampus, striatum, and cerebellum of young Wistar rats subjected to an acute hypermethioninemia protocol. The animals received, by subcutaneous injection, a single dose of Met (0.4 g/kg), MetO (0.1 g/kg), and Met + MetO, and 1 or 3 hr after administration, the animals were euthanatized for brain structure obtaining. In the hippocampus, an increase in lipid peroxidation and glutathione peroxidase (GPx) activity was observed at 1 hr in the MetO and Met + MetO groups, and a reduction in the superoxide dismutase activity was found in the Met + MetO group. Met and/or MetO induced a decrease in the thiol content and GPx activity and enhanced the lipid peroxidation at 3 hr. In the striatum, a reduction in the thiol content and GPx activity, an increase in lipid peroxidation, and AChE activity were induced by Met and/or MetO at 1 or 3 hr. Additionally, in the cerebellum, an increase in the AChE in the MetO and Met + MetO groups 1 hr after administration was observed. These data help to better understand the pathophysiological mechanisms that underlie the neurological changes found in hypermethioninemia patients.


Assuntos
Acetilcolinesterase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Glicina N-Metiltransferase/deficiência , Hipocampo/metabolismo , Animais , Glicina N-Metiltransferase/metabolismo , Homeostase/fisiologia , Peroxidação de Lipídeos/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
13.
Neurochem Res ; 46(5): 1129-1140, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33547616

RESUMO

Neuroinflammation is an event that occurs in several pathologies of brain. Rubus sp. (blackberry) is a powerful antioxidant fruit, and its extract has neuroprotective activity. The aim of this study was to investigate the blackberry extract properties on lipopolysaccharide (LPS)-induced neuroinflammation, in relation to oxidative parameters and acetylcholinesterase activity in the brain structures of mice. We also investigated interleukin-10 levels in serum. Mice were submitted to Rubus sp. extract treatment once daily for 14 days. On the fifteenth day, LPS was injected in a single dose. LPS induced oxidative brain damage and the blackberry extract demonstrated preventive effects in LPS-challenged mice. LPS administration increased reactive oxygen species levels in the cerebral cortex and striatum, as well as lipid peroxidation in the cerebral cortex. However, the blackberry extract prevented all these parameters. Furthermore, LPS decreased thiol content in the striatum and hippocampus, while a neuroprotective effect of blackberry extract treatment was observed in relation to this parameter. The blackberry extract also prevented a decrease in catalase activity in all the brain structures and of superoxide dismutase in the striatum. An increase in acetylcholinesterase activity was detected in the cerebral cortex in the LPS group, but this activity was decreased in the Rubus sp. extract group. Serum IL-10 levels were reduced by LPS, and the extract was not able to prevent this change. Finally, we observed an antioxidant effect of blackberry extract in LPS-challenged mice suggesting that this anthocyanin-rich extract could be considered as a potential nutritional therapeutic agent for preventive damage associated with neuroinflammation.


Assuntos
Antioxidantes/uso terapêutico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Frutas/química , Proteínas Ligadas por GPI/metabolismo , Inflamação/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Rubus/química
14.
Amino Acids ; 52(11-12): 1545-1558, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33184691

RESUMO

We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Glicina N-Metiltransferase/deficiência , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Taninos/farmacologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glutationa Peroxidase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Nitrosativo/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Soro/efeitos dos fármacos , Soro/metabolismo , Superóxido Dismutase/genética
15.
J Food Biochem ; : e13442, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32803896

RESUMO

The aim of the current study was to evaluate the effect of chronic administration of Eugenia uniflora fruit extract on behavioral parameters, oxidative stress markers, and acetylcholinesterase activity in an animal model of depression, which was induced by chronic unpredictable stress (CUS). Mice were divided into six groups as follows: control/vehicle (water), control/fluoxetine (20 mg/kg), control/extract (200 mg/kg), CUS/vehicle, CUS/fluoxetine (20 mg/kg), and CUS/extract (200 mg/kg). Animals of the CUS group were exposed to a series of stressors for a period of 21 days. Vehicle, fluoxetine, and hydroalcoholic extract were administered daily by gavage. Results showed that E. uniflora treatment: (a) prevented the depressant-like effect induced by CUS; (b) regulated the activity of acetylcholinesterase; (c) reduced oxidative damage to lipids and reactive oxygen species production, in the prefrontal cortex and hippocampus; and (d) prevented the reduction of glutathione peroxidase in the hippocampus of animals subjected to CUS protocol. Taken together, our findings suggested that E. uniflora extract exerts a neuroprotective effect by preventing oxidative damage and decreasing CUS-induced acetylcholinesterase activity, thus, ameliorating depressive-type behavior. PRACTICAL APPLICATIONS: E. uniflora fruit extract revealed an antidepressant-like effect and prevented the oxidative damage as well as cholinergic alterations caused by chronic stress in mice. Therefore, we believe that the results obtained in this study can be used to develop an alternative therapy for the management of depressive disorders.

16.
Neurochem Res ; 45(9): 2032-2043, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500408

RESUMO

Depression is an emotional disorder that causes mental and physical changes, and has limited pharmacotherapy. Tannic acid (TA) is a polyphenol with previously described antioxidant and neuroprotective properties. The aim of this study was to evaluate the effects of TA on lipopolysaccharide (LPS)-induced depressive-like behavior, as well as oxidative stress parameters and TNF-α levels in the brains of mice. Animals were pretreated once daily, with TA (30 or 60 mg/kg), fluoxetine (20 mg/kg) or vehicle for 7 days. On the 7th day, the animals received a single injection of LPS (830 µg/kg). After 24 h, open field, forced swimming, tail suspension, and splash tests were conducted. The endotoxin induced depressive-like behavior in these mice and this was attenuated by TA. In the cerebral cortex, hippocampus, and striatum, LPS increased lipid peroxidation and reactive oxygen species production, and this was also prevented by TA administration. TA treatment also prevented a decrease in catalase activity within the striatum. Further, LPS administration caused increased levels of TNF-α in all brain structures, and this was prevented in the cortex by TA treatment. In conclusion, TA shows many neuroprotective properties, with demonstrated antioxidant, anti-inflammatory and antidepressant effects in this animal model of acute depressive-like behavior. Therefore, this compound could provide an alternative therapeutic approach for the treatment of depression.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Inflamação/tratamento farmacológico , Taninos/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...